科学家认为即使元素周期表没有边界,但是随着它的不断扩展,肯定会出现奇怪的现象。

2016年3月6日21:52:29科学探索548阅读模式

早期的人造元素都是利用较轻原子轰击较重原子生成的。但是,德国重离子研究实验室则找到了另一种方式,即利用聚合两种中等大小的原子核,比如利用锌、镍和铬离子轰击铅和铋。通过这样的方式,德国重离子研究实验室发现了第108号元素,并将其命名为??。近年来,新元素的生成则很少靠单打独斗,更多则是联合研究的成果。比如此次发现的四种新元素,既有美国人的功劳,也有俄罗斯和德国人的贡献。国际纯粹与应用化学联合会表示,最早确信发现第117号元素和第115号元素的人包括俄罗斯杜布纳联合核研究所、美国橡树岭国家实验室以及劳伦斯利福摩尔国家实验室等几家单位,他们的成果来自于2010年到2012年间的各项实验。杜布纳联合核研究所和劳伦斯利福摩尔国家实验室于2006年开始合作,并成功发现了第118号元素。

当然,这些成果并非是毫无争议的。俄罗斯人一直对将第113号元素认定由日本人发明而耿耿于怀。第113号元素被国际纯粹与应用化学联合会确认为由日本理化学研究所旗下仁科加速器研究中心的超重元素研究小组“森田研究小组”发现。俄罗斯人认为,杜布纳联合核研究所最早于2003年就已首次利用钙轰击镅,而日本人的实验则是在一年后,日本人是利用锌离子轰击铋。

科学家认为即使元素周期表没有边界,但是随着它的不断扩展,肯定会出现奇怪的现象。

铬原子的复杂电子壳。

科学家认为即使元素周期表没有边界,但是随着它的不断扩展,肯定会出现奇怪的现象。

带负电荷的电子。

所有这些争议的核心是,究竟什么才算是真正有说服力的结果。国际纯粹与应用化学联合会的专家决定了这一结果,但这种决定毕竟很主观。这些元素是通过对它们的放射性衰变特点进行检测的。每一种同位素拥有不同的衰变过程,每一种同位素分别以自己的速度进行衰变,以半衰期进行测量。由于这种微弱的信号必须在与其它原子核聚合过程中进行探测,因此确定哪一家声明更有说服力并不容易。

考虑到这些难点,我们似乎已经看到了原子大小的上限。但是,我们还是有很好的理由进入周期表的第八行。开启元素周期表第八行确实令人振奋,因为这将意味着我们不再像以往那样生成原子。原子中的电子是以电子壳的形式排列的,每一层电子壳拥有特定的电子数量,正是这些电子壳决定了原子的行为方式以及周期表的形状。第一层壳通常容纳2个电子,氢原子有1个,氦有2个。第二层壳可以容纳8个电子。这就是为什么周期表的第二行有8个成员。更高层的电子壳拥有更多的电子。

新发现的四种新元素是元素周期表第七行的最后成员。如果我们能够发现第119号元素,它将是第八行首个成员,因此这种元素第八层壳的电子数为1个。不过,这种极端的元素可能会打破现有周期表的组织规则。每一列的元素拥有相似的特性, 这是因为它们的最外层电子壳以同样的方式排列。比如,最左侧一列的元素都是活性金属,在它们的外层壳只有一个电子。这是一种不稳定状态,原子有可能失去自己唯一的电子。相反,最右侧一列外层壳电子满员,这就意味着它们是很难发生化学反应的,因此它们被称为惰性气体。

科学家认为即使元素周期表没有边界,但是随着它的不断扩展,肯定会出现奇怪的现象。

一个氦原子拥有两个质子两个中子。

科学家认为即使元素周期表没有边界,但是随着它的不断扩展,肯定会出现奇怪的现象。

究竟还有多少元素等待我们去发现?

不过,这些规则可能并不适用于所有超重元素。在它们的原子中,位于原子核附近的电子被正电荷的原子核紧紧吸引,它们以极快的速度运行。它们的速度适用于爱因斯坦的相对论,即物质移动速度越接近光速越会增加质量。因此,内层电子变重,这种连锁反应会带动外层电子,而外层电子则能够决定元素的化学特性。结论就是这种连锁反应意味着超重元素的行为方式可能并不像我们所认为的那种方式。此外,超重元素似乎是越重衰变得越快。这就意味着不仅仅很难研究它们的化学特性,而且更难以生成它们,即使生成了也难以检测它们的化学特性。同理,可以估计较大原子核的稳定性。因此,没有任何证据证明我们无法进入元素周期表第八行。

事实上,超重元素并非总是越重越不稳定。还是有一些原子核相对长寿,存在于“稳定岛”中。这要依赖于中子数量和质子数量。粒子物理学家发现,原子核中的质子和中子也像电子一样以壳的形式,电子壳越满状态越稳定。氦、氧、钙和铅都拥有一个满员电子壳,因此它们异常稳定。同样的,中子壳满员也意味着稳定性。然而,现在看起来,这种稳定性在122号元素之前并不是决定性的。鈇也可以从原子核壳效应中获得稳定性。鈇-298预计半衰期大约为17天,这对于超重元素来说已经是极高的标准了。已知寿命最长的同位素鈇-289半衰期为2.6秒。

科学家认为即使元素周期表没有边界,但是随着它的不断扩展,肯定会出现奇怪的现象。

现有118种元素。

现在并不清楚是否所有超重元素都能够维持足够长时间。是否有一个临界点,即原子至此已无法再重,否则它们将不可能存在?美国物理学家理查德-费曼则认为如此。他通过公式计算得出结论,原子核中不可能有超过137个质子,理由是最内层的电子,即第一层电子壳没有稳定的轨道。换句话说,第137号元素的原子核将无法控制住它们。不过,费曼的公式采用了一个近似值,即原子核大小近似为零,事实上当然不是。当进行更为精确计算时,在第173号元素之前,最内层电子的能量似乎并未出现异常现象。第173号元素的最内层电子可能处于一种异乎寻常的不稳定状态,即可能产生“虚拟”粒子。换句话说,这些重元素的电子云可能有时会释放出反物质粒子。

因此,即使元素周期表没有边界,但是随着它的不断扩展,肯定会出现奇怪的现象。当然,我们将来是否能够发现这些极端元素,则另当别论。

世界之大无奇不有!

最新研究反物质起源于宇宙大碰撞 科学探索

最新研究反物质起源于宇宙大碰撞

宇宙在其存在的早期,即大爆炸后不久,充满了同等数量的物质和“反物质”--作为物质的对应物但具有相反电荷的粒子。然后,随着空间的扩张,宇宙冷却了。今天的宇宙充满了基于物质的星系和恒星。物质是如何在宇宙中...
我们的宇宙也许是另一个生物的大脑 世界之谜

我们的宇宙也许是另一个生物的大脑

刚接触物理学原子分子的时候就有个想法——我们的宇宙是否是另一个生物的大脑? 我们是否存在于别人的意识之中,在印度神话当中,对于世界呀有着这么一个有意思的说法,认为整个世界呢只是梵天神的一个梦,当她睡醒...